If a, b, c are in G.P., prove that a(b2+c2)=c(a2+b2)
Read more: Problem 11: Arithmetic and Geometric Progressions
If a, b, c are in G.P., prove that a(b2+c2)=c(a2+b2)
Read more: Problem 16: Arithmetic and Geometric Progressions
The product of first and second terms of a G.P. is 256 and that of second and third terms is 16. find the 5th term.
Read more: Problem 24: Arithmetic and Geometric Progressions
Which term of the series 1, 2, 4, 8, ... is 256?
Read more: Problem 25: Arithmetic and Geometric Progressions
Is 1/3125 a term of the series 25, 5, 1,...?
Read more: Problem 26: Arithmetic and Geometric Progressions
Find n if 1/217 is the nth term of the series 16, 8, 4, ...?
Read more: Problem 27: Arithmetic and Geometric Progressions
Content will update later
If the nth term of the series 1, 2, 4, 8, .... be the same as the nth term of the series 256, 128, 64, ... find out n.
Read more: Problem 28: Arithmetic and Geometric Progressions
The 4th term of a G.P. is x, the 10th term is y and the 16th term is z. Show that xz=y2
Read more: Problem 29: Arithmetic and Geometric Progressions